
Abstract

We describe the Tactical Battle Manager (TBM), an
intelligent agent that uses several integrated
artificial intelligence techniques to control an
autonomous unmanned aerial vehicle in simulated
beyond-visual-range (BVR) air combat scenarios.
The TBM incorporates goal reasoning, automated
planning, opponent behavior recognition, state
prediction, and discrepancy detection to operate in a
real-time, dynamic, uncertain, and adversarial
environment. We describe evidence from our
empirical study that the TBM significantly
outperforms an expert-scripted agent in BVR
scenarios. We also report the results of an ablation
study which indicates that all components of our
agent architecture are needed to maximize mission
performance.

1 Introduction

Beyond-visual-range (BVR) air combat is a modern form of
air-to-air fighting where aircraft engage each other over large
distances, often hundreds of kilometers. Compared to the
close-range dogfighting that was common during World
Wars I and II, BVR combat tends to be less reactive and
involve more long-term planning and strategy. In this paper
we describe an agent, called the Tactical Battle Manager
(TBM), designed to control an unmanned aerial vehicle
(UAV) in a BVR combat scenario using numerous integrated
AI techniques.
 BVR air combat has several key properties that make it an
interesting domain to study and necessitates an integrated
design rather than any single AI technique. Engagements
involve multiple aircraft, both teammates and adversaries,
operating in a contested airspace. The environment is
continuous, partially observable (i.e., due to limited sensor
ranges), and noisy (i.e., due to sensor errors). Additionally,
aircraft need to meet tight real-time constraints to evade
opponent attacks and avoid dangerous maneuvers (e.g.,
flying too low, colliding with teammates).
 Our integrated architecture uses several parallel
components that can each access, create, and modify
information in shared data sources. This parallel design
allows the components to process information in real time

and avoids delays caused by slower components. The TBM
uses goal reasoning [Aha et al., 2013; Roberts et al., 2016]
to dynamically reason about its goals and modify them in
response to unexpected events or opportunities (e.g., an
opponent attack, an opponent separated from their squadron).
Automated planning is used to generate plans based on the
TBM’s goals. Since the plans of opponent aircraft are initially
unknown and may change over time, the TBM continuously
monitors the actions of opponent aircraft and performs
behavior recognition to predict their current plans and
targets. The TBM uses its own plans, as well as the behaviors
of friendly and opponent aircraft, to perform state prediction
(i.e., anticipate how the environment is likely to change).
However, because the TBM may be using incomplete sensory
information, have erroneous sensor values, or have incorrect
assumptions about opponent behavior, it continuously
performs discrepancy detection to determine if there are any
flaws with its predictions, assumptions, or opponent models.
 The remainder of this paper describes our agent
architecture and provides justification for the inclusion of
each of the integrated components. In Section 2 we describe
the BVR air combat domain and formalize the problem being
addressed. Section 3 describes our integrated agent design
and the role of each component. We empirically evaluate the
TBM’s design in Section 4, and discuss related work in
Section 5. Finally, we discuss aspects of our work in Section
6, and summarize our contributions and mention areas for
future work in Section 7.

2 Beyond-Visual-Range Air Combat

BVR air combat involves two opposing teams of aircraft
located at large distances from each other (i.e., hundreds of
kilometers) and operating in large airspaces (i.e., thousands
of square kilometers). The objective of each team is to
destroy the opponent aircraft or force them to retreat. Aircraft
do not use short-range weapons, as is the case in dogfighting-
style air combat, but instead use active radar homing missiles
with ranges of approximately 50 kilometers.
 We use the Advanced Framework for Simulation,
Integration and Modeling (AFSIM) system [Clive et al.,
2015], a high-fidelity air combat simulator that allows aircraft
to be controlled either programmatically or using physical
hardware (e.g., flight sticks, cockpit consoles). AFSIM

A Goal Reasoning Agent for Controlling UAVs

 in Beyond-Visual-Range Air Combat

Michael W. Floyd1 and Justin Karneeb1 and Philip Moore1 and David W. Aha2

1Knexus Research Corporation; Springfield, Virginia; USA
2Navy Center for Applied Research in AI; Naval Research Laboratory; Washington, DC; USA

{michael.floyd, justin.karneeb}@knexusresearch.com
david.aha@nrl.navy.mil

allows for the inclusion of a variety of aircraft models,
including existing real-world aircraft and custom aircraft. We
use models based on the F-16 fighter jet. AFSIM allows for
low-level control of an aircraft but also provides higher-level
abstractions (e.g., maintaining altitude, moving towards a
target, waypoint-based navigation).
 The TBM is responsible for controlling a single aircraft in
a BVR combat mission. At the start of a mission, the TBM
and each of its teammates receives a mission briefing. This
briefing contains information about the team, which is
assumed to be correct, and the opponents, which may be
incorrect. Information about the team includes: team leader,
capabilities (i.e., each teammate’s aircraft type, each
teammates missile capabilities), tactics (i.e., initial mission
goals, preferred altitudes for engaging and evading enemies,
preferred angles of approach and firing angles), speed (i.e.,
passive speed, approach speed, engagement speed, cornering
speed, escape speed), and weapons (i.e., distances at which
missiles are expected to hit and miss, distance from an
opponent that is considered dangerous, when to take
defensive shots). This briefing’s information about the
opponents contains the number of opponent aircraft, their
aircraft type, and weapons capabilities.
 At discrete time intervals, each aircraft 𝑖 receives as
sensory input a set 𝑠𝑖

𝑡 containing the 𝑛𝑖 objects 𝑜1, … , 𝑜𝑛𝑖
 that

are currently visible to it at time 𝑡 (𝑠𝑖
𝑡 = {𝑜1, 𝑜2, … , 𝑜𝑛𝑖

}).
These objects include positional information (i.e., latitude,
longitude, altitude, heading, velocity) about teammate and
opponent aircraft, as well as teammate and opponent missiles.
Since each aircraft has partial observability, 𝑛𝑖 can vary
among time intervals and there is no guarantee that the same
objects will always be visible (i.e., objects can move into and
out of an aircraft’s field of vision). However, aircraft on the
same team can communicate and share sensory information.
If 𝒮𝑡𝑒𝑎𝑚

𝑡 is the set of all sensory inputs received by an
aircraft’s team at the current time 𝑡, then each of that team’s
aircraft will have access to a team-level sensory input 𝑠𝑡𝑒𝑎𝑚

𝑡
that contains all visible objects:

𝑠𝑡𝑒𝑎𝑚
𝑡 = ⋃ 𝑠𝑖

𝑡

𝑠𝑖
𝑡∈𝒮𝑡𝑒𝑎𝑚

𝑡

 The aircraft can perform several high-level parameterized
actions, including flying in a specified formation (i.e.,
maintaining a speed and direction relative to other
teammates), free flying (i.e., flying in a straight line in a
specified direction at a fixed altitude), flying relative to a
target (i.e., towards, away from, to its left, to its right), and
firing a missile at a specified target. The role of the TBM is
to use the mission briefing and sensory information to
perform actions that intelligently control the aircraft.

3 System Design

In this section we describe the integrated design of the TBM
(Figure 1). It uses several integrated components and shared
resources that allow the components to interact and provide
on-demand services. Reasoning components are shown in
orange, discrepancy detectors in yellow, and shared resources

in gray. The arrows denote the flow of information between
the various components. For example, the Goal Manager
modifies the goals stored in the Goals shared resource, which
can be accessed and used by the Planner.

Figure 1: The conceptual diagram of the Tactical Battle Manager

(TBM) composed of shared resources (gray), reasoning components

(orange), and discrepancy detectors (yellow). Arrows show the

movement of information between the various components.

3.1 Shared Resources

The TBM has five data sources that can be accessed and
modified by any of its components (although in practice only
a subset will actually access each data source): Goals, Plans,
Discrepancies, Expectations, and Object Models. These
shared data sources serve as the central communication
mechanism through which the components share
information. No single component is responsible for
modifying all five data sources, so it is only through their
integration that sufficient data is available for the system to
intelligently reason on and act.

 Goals: The Goals data source contains the TBM’s

currently selected goals. Although the TBM can have

multiple simultaneous goals, our current

implementation restricts the agent to a single active

goal. The representation of goals differs slightly from

traditional representations (i.e., a set of grounded

literals), and is instead composed of m higher-level

desires. Each desire has an associated function 𝜆𝑚 that

maps the current sensory input (i.e., 𝑠𝑡𝑒𝑎𝑚
𝑡) to a value

between 0 and 1 (𝜆𝑚: 𝑆 → [0,1], where 𝑆 is the set of

all sensory inputs), with higher values better satisfying

the desire. Each sensory input is represented by a tuple

𝑑𝑒𝑠 of desire values 𝑑1, … , 𝑑𝑚 (𝑑𝑒𝑠 = 〈𝑑1, … , 𝑑𝑚〉). A

goal 𝑔 is represented by a tuple of preferred desire

values 𝑝𝑟𝑒𝑓1, … , 𝑝𝑟𝑒𝑓𝑚 (𝑔 = 〈𝑝𝑟𝑒𝑓1, … , 𝑝𝑟𝑒𝑓𝑚〉),
meaning that the TBM will attempt to achieve

environment states that match those desire values (i.e.,

where 𝑑𝑒𝑠 and 𝑔 are similar). Examples of desires

include maintaining the TBM’s safety, maintaining a

teammate’s safety, disrupting opponent movements,

avoiding contact with additional opponents, and

aggressively targeting opponents.

 Plans: The Plans data source contains the grounded

plan the TBM is currently executing. A plan 𝜋 contains

a sequence of actions 𝑎1, … , 𝑎𝑙 to achieve the current

goal 𝑔 (𝜋 = 〈𝑎1, … , 𝑎𝑙〉).

 Expectations: These are stored at two levels of

granularity: object-level and desire-level. Object-level

expectations contain the expected environment state at

discrete time intervals (i.e., projections of what 𝑠𝑡𝑒𝑎𝑚
𝑡

will be at various points in time t). If expectations are

available for 𝑘 time points in the future, the object-level

expectations 𝐸𝑜𝑙 is a list of 𝑘 state expectations (𝐸𝑜𝑙 =
〈𝑠𝑡𝑒𝑎𝑚

𝑡+1 , 𝑠𝑡𝑒𝑎𝑚
𝑡+2 , … , 𝑠𝑡𝑒𝑎𝑚

𝑡+𝑘 〉). The desire-level

expectations 𝐸𝑑𝑙 are a higher-level representation that

encodes how well each future state is predicted to

satisfy each of the 𝑚 desires (𝐸𝑑𝑙 =
〈𝑑𝑒𝑠𝑡+1, 𝑑𝑒𝑠𝑡+2, … , 𝑑𝑒𝑠𝑡+𝑘〉). By using two levels of

expectations, the TBM can examine whether the

current sensory input meets expectations at a high level

(e.g., the TBM has the expected level of safety) or at a

low level (e.g., an opponent aircraft is at its expected

position).

 Object Models: These contain detailed information

about each observed object in the environment (i.e.,

aircraft and missiles). If at time 𝑡 there have been 𝑛

unique objects observed in the environment (i.e., in the

current and all previous team-level sensory inputs), the

set 𝒪ℳ contains an object model 𝑂𝑖 for each of the 𝑛

objects (𝒪ℳ = {𝑂1, 𝑂2, … , 𝑂𝑛}). Each object model

contains the object type 𝑡𝑦 (i.e., friendly aircraft,

hostile aircraft, friendly missile, hostile missile), its

plan 𝜋, its target 𝑡𝑎𝑟, and the set 𝑂𝐵𝑆 of all

observations of the object (𝑂 = 〈𝑡𝑦, 𝜋, 𝑡𝑎𝑟, 𝑂𝐵𝑆〉). For

this paper we assume all missiles have the same plan

and it does not change (i.e., it flies towards its target).

 Discrepancies: These represent unexpected events or

environment states that are encountered by the agent.

Any discrepancies that are identified by the

discrepancy detectors are stored. Each discrepancy 𝑑

contains the type 𝑡𝑦 (e.g., the detector that identified

the discrepancy), its priority 𝑝 (i.e., how significant it

is), the object 𝑂 that caused the discrepancy, the

object’s expected value 𝑣𝑒𝑥𝑝, and its observed value

𝑣𝑜𝑏𝑠 (𝑑 = 〈𝑡𝑦, 𝑝, 𝑂, 𝑣𝑒𝑥𝑝 , 𝑣𝑜𝑏𝑠〉). Discrepancies

involving multiple objects are represented as multiple

discrepancies, one for each object.

3.2 Goal Manager

The Goal Manager is responsible for selecting new goals for
the TBM (i.e., modifying Goals). A goal change can be
externally or internally controlled. An externally controlled

goal change occurs when the TBM receives a command from
a superior (i.e., a human teammate or lead aircraft). In this
situation, the TBM immediately switches to the new goal. An
internally controlled goal change is the result of the TBM’s
own decision making process. An internally controlled goal
change may be the result of the TBM determining it has
successfully completed its current goal, predicting it will fail
to achieve it current goal (e.g., because of unanticipated
actions by other entities), or recognizing an opportunistic
situation (e.g., an exposed opponent). Goal failure is
predicted by periodically reevaluating the current plan to
determine if continuing to perform the plan will no longer
achieve the TBM’s goals (i.e., due to the dynamic and
adversarial environment). Similarly, opportunistic situations
are a result of the current plan resulting in unanticipated states
that are potentially beneficial to the TBM (e.g., an
Opportunistic Target discrepancy as described in Section
3.6). Being able to dynamically modify its goals gives the
TBM the ability to respond to unanticipated events without
relying on plans that cover all contingency situations.
 The Goal Manager continuously monitors the
Discrepancies data source and uses a set of rules to determine
if the discrepancy warrants a goal change. For example,
consider a situation where a Model Changed discrepancy
(discussed in Section 3.6) was created because the hostile
aircraft 𝑂′ changed its plan (i.e., as determined by the
Behavior Recognizer described in Section 3.3). The
following are examples of rules the Goal Manager uses to
handle Model Changed discrepancies:

Rule 1:

 IF: (𝑂′ was not attacking 𝑇𝐵𝑀) and (𝑇𝐵𝑀 was not
attacking 𝑂′) and (𝑂′ is now attacking 𝑇𝐵𝑀) and
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂′, 𝑇𝐵𝑀) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

 THEN: Change goal
Rule 2:

 IF: (𝑂′ was not attacking 𝑇𝐵𝑀) and (𝑇𝐵𝑀 was not
attacking 𝑂′) and (𝑂′ is now attacking 𝑇𝐵𝑀) and
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂′, 𝑇𝐵𝑀) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

 THEN: Ignore discrepancy

The two rules, while nearly identical, differ in how close the
hostile aircraft is to the TBM. In Rule 1, since the hostile is
now attacking the TBM and is close, the Goal Manager will
change the TBM’s goal in response to the immediate threat.
In Rule 2, the hostile is now attacking the TBM but is a
sufficient distance away (e.g., significantly outside the
hostile’s attack range) so the Goal Manager will ignore the
discrepancy. The implemented version of the Goal Manager
uses a collection of rules that are provided by domain experts.

The way in which the Goal Manager selects a new goal is
based on goal priorities that are defined as part of an initial
mission briefing. For example, the mission briefing may
indicate that goals that target a specific high-value opponent
are of higher priority than other goals. In this situation, the
Goal Manager will select a new goal that targets the high-
value opponent unless there are circumstances that prevent it

from doing that (e.g., the high-value target is out of radar
range), in which case it will select a lower-priority goal.

3.3 Behavior Recognizer

The Behavior Recognizer examines the history of
observations of each entity (i.e., stored in the Object Models),
and updates their recognized plans and targets if any changes
are detected. Our approach uses an entity’s angle relative to
each potential opponent aircraft to determine its target. For
each potential target, the standard deviation of the angle is
calculated, and the opponent with the lowest standard
deviation over time is classified as the target. The intuition
for this classification approach is that the entity will likely
keep its target within its field of vision (i.e., if it is attacking)
or at its rear (i.e., if it is evading), whereas the position of
non-targets will not influence where it moves (i.e., there will
be more variance in the angle relative to those aircraft).
 The Behavior Recognizer performs simplified rule-based
plan recognition. Each aircraft is labelled as either Attacking
or Evading. The rules use the object’s angle relative to its
target, speed, and altitude to classify its plan. The following
are examples of two rules used by our system:

Rule 1:

 IF: (angle is FACING) and (speed is FAST) and
(altitude is HIGH)

 THEN: Attacking
Rule 2:

 IF: (angle is FACING AWAY) and (speed is FAST)
and (altitude is LOW)

 THEN: Evading

The first rule encodes that aircraft that are facing their target,
moving at high speeds, and at a high altitude tend to be
performing attacking behaviors. Similarly, aircraft that are
facing away from their target, moving at high speeds, and at
low altitudes tend to be evading. For each of these
classifications, the entity is assumed to be executing a simple
plan to achieve the desired behavior. For an Attacking entity,
the plan involves flying towards and firing missiles at its
target, whereas for an Evading entity the plan involves flying
away from any opponents and missiles. The rules are
provided by domain experts.

3.4 Predictor

The Predictor uses the TBM’s current plan (i.e., stored in
Plans) and the recognized plans of the other entities (i.e.,
stored in the Object Models) to generate predictions of the
future environment states (i.e., to revise Expectations). The
TBM uses a lower-fidelity internal simulator to predict the
environment changes that occur if each entity continues
performing its current plan. More specifically, it uses a
lightweight version of AFSIM that uses less sophisticated
flight models (i.e., object movement is determined using
simple functions rather than full physics models), full
observability, and less frequent sensory updates (i.e., sensor
values are provided once per second rather than ten times per

second), allowing complete simulations to be run quickly
(i.e., a fraction of a second).
 Before the Predictor runs a new simulation, the previous
expectations are cleared (i.e., 𝐸𝑜𝑙 = 〈 〉, 𝐸𝑑𝑙 = 〈 〉). This is
done because the Predictor should have more information
than when the previous simulation was performed (i.e.,
updated positions and plans), so new expectations are
assumed to be more accurate than previous ones. At fixed
time intervals during the simulation (i.e., 𝑡 + 1, 𝑡 + 2, … , 𝑡 +
𝑘), the current environment state is sampled and stored in the
expectations (i.e., 𝑠𝑡𝑒𝑎𝑚

𝑡+1 , 𝑠𝑡𝑒𝑎𝑚
𝑡+2 , … , 𝑠𝑡𝑒𝑎𝑚

𝑡+𝑘). We use a sampling
rate of once per second. These expectations are coarse, due to
the low-fidelity simulation, but provide a general trajectory
of future environment states, allowing the TBM to identify if
any entities deviate from their current plans or if new objects
become visible (e.g., new opponents or missiles). Similarly,
although the environment is highly dynamic, longer-term
expectations are less important because the TBM will update
its expectations frequently.

3.5 Planner

The Planner uses the TBM’s current goal (i.e., stored in
Goals) and the recognized plans of other entities (i.e., stored
in the Object Models) to generate a plan for the TBM to
execute (i.e., replace the plan stored in Plans). The Planner is
implemented as a plan library planner [Borrajo et al., 2015];
it uses a library of ungrounded plan templates (i.e., each plan
is represented as a sequence of actions but the actions do not
have their parameters specified). For example, consider the
simple plan template:

1. Free fly at a specified heading
2. Fly directly at a target
3. Fire at the target

This specifies that the TBM should free fly, fly, and fire, but
leaves the heading and target ungrounded. The templates in
the plan library are provided by BVR domain experts and
represent desirable air combat tactics.
 During planning, the Planner generates multiple
instantiations of any applicable plans (i.e., grounds the
actions). The instantiations as exhaustive, but are constrained
by any restrictions defined in the mission briefing (e.g.,
maximum attack speed, attack angle) or resource availability
(e.g., number of remaining missiles). To evaluate each
candidate plan, their outcome is predicted using the
lightweight simulator (i.e., the simulator used by the
Predictor). A single simulation is run for each candidate plan.
The outcome of each candidate plan’s simulation (i.e.,
represented in terms of how well a plan achieves each desire)
is compared to the TBM’s goal, and the plan that best
achieves the TBM’s goal is selected. Achievement of the
TBM’s goal is measured as the similarity between the TBM’s
goal and the state reached by performing the plan (i.e., the
similarity between the desire values).

3.6 Discrepancy Detectors

The discrepancy detectors identify unexpected events or
environment states encountered by the agent. There are seven
discrepancy detectors in the TBM [Karneeb et al., 2016]:

Incoming Missile, Model Changed, Flanking Hostile,
Expectations Violated, Out of Ammo, Low on Fuel, and
Opportunistic Target.
 The Incoming Missile detector identifies unexpected
hostile missiles. When an unexpected hostile missile appears
(e.g., the TBM was not expecting the opponent to fire it), a
discrepancy is created. This allows the TBM to dynamically
respond to an attack and attempt to evade the missile. The
Model Changed discrepancy detector creates a discrepancy
whenever a hostile aircraft changes its plan or target. In
response, the TBM may need to change its own tactics (i.e.,
goals or plans) or update its expectations.
 The Flanking Hostile detector detects when hostile aircraft
deviate from their expected position such that they approach
the range at which they can attack the TBM’s UAV. An
aircraft that approaches attack range becomes a direct threat
to this UAV, so creating a discrepancy allows the TBM to
respond to the threat and modify the UAV’s behavior
accordingly. The Expectations Violated detector examines
how closely the Expectations deviate from the actual
environment states. While the previous three types of
detectors look for individual discrepancies (e.g., a single
missile or aircraft), this one identifies when the entire
environment is deviating too far from expectations. Given the
long-term plans and dynamic nature of BVR air combat, such
deviations are to be expected, but using this approach allows
the TBM to identify when new goals or updated plans may
be necessary. The Out of Ammo and Low on Fuel
discrepancy detectors are used to identify when the TBM’s
resources are running low (i.e., it should return to base or a
resupply station).

Finally, the Opportunistic Target detector identifies when
opponent aircraft that the TBM is not currently targeting
become favorable to engage (e.g., can be flanked or attacked
from behind). This allows the TBM to quickly respond to
opportunistic targets and capitalize on an opponent’s tactical
errors.

4 Evaluation

Our empirical evaluation assesses the TBM’s ability to
operate effectively in a BVR air combat domain. Our
experiments concern the following hypotheses:

H1: The TBM will outperform a baseline scripted agent
in BVR scenarios

H2: Each component of the TBM contributes positively
to overall mission performance

4.1 Experimental Conditions

The evaluation scenarios involve two teams of aircraft with
four aircraft per team. A prototypical scenario was created
where each team is aligned in a column with aircraft spaced
10 nautical miles from each other and opposing teams spaced
45 nautical miles from each other. The prototypical scenario
was used to create 100 different random scenarios where each
aircraft’s position is modified by between -4 and 4 nautical
miles (according to a uniform random distribution) in both
the North/South and East/West directions. Figure 2 shows a

graphical representation of one such random scenario. All
evaluations use the same random scenarios. Since the initial
positions may provide an advantage to one team, each
random scenario is run twice with the teams switching
positions between runs. This results in 200 total runs per
evaluation. A run ends when one team is completely
destroyed or 20 minutes elapse.
 We used eight different teams of aircraft. One is controlled
by the TBM, one is controlled by a scripted agent, and the
remaining six are ablations of the TBM that have one
component replaced with a simplified (but still functional)
version. The teams are:

 𝑻𝑩𝑴𝒇𝒖𝒍𝒍: Aircraft are controlled by TBMs using the

full agent architecture described in this paper.

 𝑹𝑰𝑷𝑹: Aircraft are controlled by scripted agents that

are implemented using the Reactive Integrated

Planning aRchitecture (RIPR) [Clive et al., 2015].

RIPR agents were designed with the assistance of

subject-matter experts (i.e., ex-pilots) and are modelled

using behavior trees. The agents perform competent

BVR combat behavior across all aspects of an

encounter (e.g., target pursuit, attacking, escaping

danger).

 𝑻𝑩𝑴𝑮𝑴: Offensive goals use less-sophisticated target

selection that considers only the nearest opponent.

 𝑻𝑩𝑴𝒑𝒍𝒂𝒏: The instantiated plans are restricted to

consider only direct motion routes (i.e., flying directly

to a target rather than a path that flanks it).

 𝑻𝑩𝑴𝒑𝒓𝒆𝒅: Desire-level expectations are generated

randomly according to a uniform random distribution.

 𝑻𝑩𝑴𝑩𝑹: Performs behavior recognition for only the

first 15 seconds of the mission (i.e., does not perform

additional recognition afterward).

 𝑻𝑩𝑴𝑫𝑫: All detectors are turned off except the

Incoming Missile detector.

 𝑻𝑩𝑴𝒏𝒐𝒏𝒆: The simplified versions of all five

components are used.

Each agent is given an initial goal to destroy all opponent
aircraft while minimizing team casualties. We measure how
well that goal is achieved using the following metrics:

 Kills: The number of opponent aircraft destroyed

 Wins: The number of scenarios that end due to all

opponents being destroyed

4.2 Results

Each experiment involves the 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 team competing
against one of the other seven teams. The results, shown in
Table 1, measure the number of kills and wins for both the
𝑇𝐵𝑀𝑓𝑢𝑙𝑙 team (labeled as 𝑇𝐵𝑀𝑓𝑢𝑙𝑙) and their opponents
(labeled as Opponent). Also, the percent increase in the
performance of the 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 team versus the opponent team
is displayed (labeled as Increase), with positive values
indicating 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 outperformed its opponent. For Wins, the

values do not sum up to 200 because some scenarios ended
in draws (i.e., the time limit was reached with aircraft on both
teams remaining). In all experiments, using the full integrated
TBM architecture resulted in statistically significant
improvements to BVR air combat performance (using a
single-tailed t-test with 𝑝 < 0.01).

Figure 2: Graphical representation of the starting conditions in a

constrained random 4 vs 4 scenario (aircraft size not to scale)

Table 1: Results of 200 scenarios comparing a team of four 𝑇𝐵𝑀𝑓𝑢𝑙𝑙

agents to a team of four opponents

Opponent

Kills Wins

𝑻
𝑩

𝑴
𝒇

𝒖
𝒍𝒍

O
p

p
o

n
en

t

In
cr

e
a

se

𝑻
𝑩

𝑴
𝒇

𝒖
𝒍𝒍

O
p

p
o

n
en

t

In
cr

e
a

se

𝑅𝐼𝑃𝑅 756 224 237.5% 165 5 3200.0%

𝑇𝐵𝑀𝐺𝑀 700 549 27.5% 118 54 118.5%

𝑇𝐵𝑀𝑝𝑙𝑎𝑛 663 580 14.3% 106 67 58.2%

𝑇𝐵𝑀𝑝𝑟𝑒𝑑 697 577 20.8% 112 50 124.0%

𝑇𝐵𝑀𝐵𝑅 679 571 18.9% 99 63 57.1%

𝑇𝐵𝑀𝐷𝐷 722 566 27.6% 124 53 134.0%

𝑇𝐵𝑀𝑛𝑜𝑛𝑒 718 545 31.7% 127 50 154.0%

4.3 Discussion

Although 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 had sizable victories over all other teams,
the most significant improvement was 𝑇𝐵𝑀𝑓𝑢𝑙𝑙 over 𝑅𝐼𝑃𝑅,
with our goal reasoning agent beating the scripted agent the
vast majority of the time. This provides strong evidence in
support of H1. We conjecture that the highly dynamic and
uncertain nature of the BVR environment made it difficult for
a scripted agent to react to the full range of discrepancies and
unexpected events. Although RIPR performed competent
BVR behavior (i.e., could intelligently perform the full range
of BVR combat behavior) and was designed by domain
experts, it was infeasible for its behavior tree to cover all
unexpected events in all situations. The TBM did not suffer a
similar limitation because it can dynamically modify its goals
or replan in response to unexpected events.

The full TBM agent architecture outperformed each of the
ablations that used component simplifications. This provides
support for H2 and demonstrates that our integrated
architecture relies on each of the TBM’s reasoning
components to achieve full performance. Our motivation for
using simplified components rather than removing the
components entirely was to ensure that the resulting agents
could still perform full BVR behavior without being
excessively handicapped. We conducted an additional test
that compared the performance of the TBM that uses all five
simplified components (𝑇𝐵𝑀𝑛𝑜𝑛𝑒) versus the scripted agent.
Although 𝑇𝐵𝑀𝑛𝑜𝑛𝑒 is not as competent as 𝑇𝐵𝑀𝑓𝑢𝑙𝑙, it still
significantly outperformed the scripted agent (133 wins, 23
losses, an increase of 478.3%). This provides further support
for H1 by demonstrating that the TBM, even with simplified
versions of each component, outperformed a competent
scripted agent that was authored by domain experts.

5 Related Work

To the best of our knowledge, there have been relatively few
applications of AI agents in high-fidelity BVR scenarios,
with the exception of the RIPR agent we discussed in our
evaluation [Clive et al., 2015]. In low-fidelity simulators (i.e.,
simple 2D environments without sophisticated flight and
aircraft models), genetic algorithms have been used to
optimally assign targets to each aircraft [Luo et al., 2005] and
select initial team formations [Mulgund et al., 1998]. These
approaches represent a subset of the complete agent behavior
performed by the TBM. Also, they are performed only before
the start of a scenario; they do not respond to changes in the
environment or unexpected opponent behavior.
 Our previous work in the BVR domain has primarily
focused on individual reasoning components in isolation and
has not evaluated the effectiveness of the integrated agent
architecture. This includes measuring the effectiveness of
various Behavior Recognition algorithms [Alford et al.,
2015; Borck et al., 2015] and a smaller set of discrepancy
detectors [Karneeb et al., 2016]. In this paper we instead
presented the complete TBM architecture, empirically
evaluated the influence of each reasoning component, and for
the first time directly compared it to an expert-authored BVR
agent.

Goal Reasoning has been successfully used to control
agents in several autonomous systems domains. Wilson et al.
[2016] control an autonomous underwater vehicle as it
performs a surveying task. The agent monitors for
unexpected surface vehicles and modifies its goals depending
on whether the vehicle is hostile. Their work differs from ours
in that their agent uses only a single discrepancy detector (i.e.,
unexpected surface vehicle), performs a simpler form of
behavior recognition (i.e., labeling a vehicle as hostile or not),
and does not actively engage opponents (i.e., it stops
surveying until the adversary leaves). GRIM [Johnson et al.,
2016] allocates unmanned aerial vehicles to search specific
regions during disaster relief scenarios. GRIM responds to
events including changing resource levels, adding or
removing vehicles, unexpected environment factors, and
changing mission priorities. This differs from the TBM in

that GRIM is focused on collaborative team goals rather than
the real-time control of individual vehicles. This is possible
in GRIM because each vehicle performs a predefined search
pattern once assigned and does not need to respond to attacks
from hostile enemies.

The Autonomous Squad Member (ASM) [Gillespie et al.,
2015] is another example of an integrated goal reasoning
agent. The ASM agent controls a simulated unmanned
ground vehicle and operates as a member of a human-robot
squad. Based on observation of the environment, the agent
hypothesizes about the actions of other actors and the
occurrence of external events, recognizes the goals and plans
of its teammates, and modifies its own goals in response. The
primary difference between the ASM and the TBM is that the
ASM agent does not perform the full behavior of a human
teammate (i.e., it could not replace a human member of the
team). Instead, it performs a limited set of behaviors meant to
support human teammates.

While some of the previously described agents operate in
the presence of hostile agents in the environment, none
directly engage with them. In the real-time strategy game
StarCraft, Goal Reasoning has been used to control an agent
that attempts to defeat an opponent in a military-style battle
[Weber et al., 2012]. This is similar to the TBM in that it
requires recognizing the opponent’s intent and responding to
unexpected opponent actions. However, the primary
differences are that their system contends with only a single
opponent in each scenario (although the opponent controls
many individual units, as does the Goal Reasoning agent
GDA-C [Jaidee et al., 2013]), whereas the TBM engages a
team of opponent agents, and their discrepancy detector looks
only for changes in the number of visible objects the
opponent controls (e.g., buildings and units), whereas the
TBM uses a richer set of discrepancy detectors.

Dynamically changing an agent’s goals and performing
real-time replanning in response to a changing environment
has been studied in a robotic search and rescue domain
[Talamadupula et al., 2011]. This differs from our work in
that the agent does not detect unexpected events or select its
own goals (i.e., this information is provided by the robot’s
operator). MADbot [Coddington et al., 2005] uses a set of
internal motivators to evaluate goals and trigger goal
changes. Unlike the TBM, MADbot’s goal changes are in
response to internal factors and do not take into account
external events or the actions of other agents.

6 Discussion

Our integrated agent was designed for high performance in a
specific application domain, beyond-visual-range air combat,
so it uses a considerable amount of domain-specific
information. This is especially true of the rule-based
components that rely heavily on rules provided by domain
experts. Given the level of complexity of BVR combat and
the well-established tactics used by pilots, it was necessary to
use domain knowledge to ensure that the TBM achieved a
high level of performance while behaving is such a way that
a human teammate would consider its behavior reasonable
and predictable. However, although our agent incorporates a

significant amount of domain-specific information, we feel
that the overall design could be used in other domains. Goal
management, behavior recognition, planning, prediction, and
discrepancy detection are all components that would be
valuable to include in agents in other domains. Additionally,
a number of the domain-specific aspects of our agent could
be transferred into similar domains. For example, the
Incoming Missile discrepancy detector could be modified to
work in other domains where hostile agents fire projectiles or
the Behavior Recognizer’s rules for target detection could be
modified for other combat environments.
 One of the primary lessons learned from the development
of our agent was that using some state-of-the-art algorithms
for the components resulted in decreased overall performance
in our domain. While state-of-the-art algorithms often
improved performance on a specific subtask, the
improvements were often not significant enough to offset
their increased computational costs. Instead, we found it was
more beneficial to use simpler low-cost techniques. The
overall performance of our system was a result of numerous
integrated techniques working together, so allowing real-time
execution of all components was more important than small
component-level performance improvements. However, our
approach uses a modular architecture so we can replace
existing components with state-of-the-art algorithms if they
meet real-time constraints or the UAV adds additional
computational resources.

7 Conclusions

In this paper, we presented an integrated agent architecture,
the Tactical Battle Manager, for controlling an unmanned
aerial vehicle in simulated beyond-visual-range air combat
scenarios. The primary novelty of the TBM is that it
combines techniques from goal reasoning, automated
planning, opponent behavior recognition, state prediction,
and discrepancy detection. Our empirical evaluation
demonstrated that the TBM significantly outperforms an
expert-authored BVR agent in a set of combat scenarios.
Additionally, our ablation study demonstrated that each
individual reasoning component of the TBM positively
influenced mission performance; maximum mission
performance was only achieved when the fully integrated
architecture was used.
 One area of future work we plan to address is to integrate
learning into the discrepancy detection process. For example,
this could include allowing the TBM to learn models of
opponent aircraft and missiles, and using those models to
detect different hardware configurations (e.g., new types of
aircraft or more advanced missiles). We also plan to add
capabilities for the TBM to identify opportunistic targets and
communicate with other UAVs to perform small-team tactics
(e.g., surround the opponent, create a diversion).

Acknowledgments

Thanks to OSD ASD (R&E) for supporting this research, and
our subject matter experts for their many contributions.

References

[Aha et al., 2013] David W. Aha, Michael T. Cox, Héctor
Muñoz-Avila (Eds.). Goal Reasoning: Papers from the
ACS Workshop (Technical Report CS-TR-5029).
University of Maryland, Department of Computer
Science, 2013.

[Alford et al., 2015] Ron Alford, Hayley Borck, Justin
Karneeb, and David W. Aha. Active behavior recognition
in beyond visual range air combat. In Proceedings of the
Third Conference on Advances in Cognitive Systems,
2015.

[Borck et al., 2015] Hayley Borck, Justin Karneeb, Michael
W. Floyd, Ron Alford, and David W. Aha. Case-based
policy and goal recognition. In Proceedings of the 23rd
International Conference on Case-Based Reasoning,
Frankfurt am Main, Germany, pages 30-43, 2015.

[Borrajo et al., 2015] Daniel Borrajo, Anna Roubíčková, and
Ivan Serina. Progress in case-based planning. ACM
Computing Surveys, 47(2): 35:1–35:39, 2015.

[Clive et al., 2015] Peter D. Clive, Jeffrey A. Johnson,
Michael J. Moss, James M. Zeh, Brian M. Birkmire, and
Douglas D. Hodson. Advanced Framework for
Simulation, Integration and Modeling (AFSIM). In
Proceedings of the 13th International Conference on
Scientific Computing, pages 73-77, 2015.

[Coddington et al., 2005] Alexandra M. Coddington, Maria
Fox, Jonathan Gough, Derek Long, and Ivan Serina.
MADbot: A motivated and goal directed robot. In
Proceedings of the 20th AAAI National Conference on
Artificial Intelligence, pages 1680-1681, 2005.

[Gillespie et al., 2015] Kellen Gillespie, Matthew Molineaux,
Michael W. Floyd, Swaroop S. Vattam, and David W.
Aha. Goal reasoning for an autonomous squad member.
In Goal Reasoning: Papers from the ACS Workshop,
pages 52-67, 2015.

[Jaidee et al., 2013] Ulit Jaidee, Héctor Muñoz-Avila, and
David W. Aha. Case-based goal-driven coordination of
multiple learning agents. In Proceedings of the 21st
International Conference on Case-Based Reasoning,
pages 164-178, 2013.

[Johnson et al., 2016] Benjamin Johnson, Mark Roberts,
Thomas Apker, and David W. Aha. Goal reasoning with
information measures. In Proceedings of the Fourth
Conference on Advances in Cognitive Systems, 2016.

[Karneeb et al., 2016] Justin Karneeb, Michael W. Floyd,
Philip Moore, and David W. Aha. Distributed discrepancy
detection for BVR air combat. In Goal Reasoning: Papers
from the IJCAI Workshop, 2016.

[Luo et al., 2005] De-Lin Luo, Chun-Lin Shen, Biao Wang,
and Wen-Hai Wu. Air combat decision-making for
cooperative multiple target attack using heuristic adaptive
genetic algorithm. In Proceedings of the 4th International
Conference on Machine Learning and Cybernetics, pages
473-478, 2005.

[Mulgund et al., 1998] Sandeep Mulgund, Karen Harper,
Kalmanje Krishnakumar, and Greg Zacharias. Air combat
tactics optimization using stochastic genetic algorithms.
In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, pages 3136-3141, 1998.

[Roberts et al., 2016] Mark Roberts, Daniel Borrajo, Michael
T. Cox, Neil Yorke-Smith (Eds.). Goal Reasoning: Papers
from the IJCAI Workshop, 2016.

[Talamadupula et al., 2011] Kartik Talamadupula, Paul
Schermerhorn, J. Benton, Subbarao Kambhampati, and
Matthias Scheutz. Planning for agents with changing
goals. In Proceedings of the 21st International
Conference on Automated Planning and Scheduling:
System Demonstrations, pages 71-74, 2011.

[Weber et al., 2012] Ben G. Weber, Michael Mateas, and
Arnav Jhala. Learning from demonstration for goal-
driven autonomy. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, pages 1176-1182,
2012.

[Wilson et al., 2016] Mark A. Wilson, James McMahon,
Artur Wolek, David W. Aha, and Brian H. Houston.
Toward goal reasoning for autonomous underwater
vehicles: Responding to unexpected agents. In Goal
Reasoning: Papers from the IJCAI Workshop, 2016.

